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Abstract 

Over 80% of all DSP applications require some form of frequency domain processing and there 
are many techniques for performing this kind of operation. This two part workshop will serve as 
an introduction to frequency domain signal processing. In this first session in a two session 
series, we will cover the theory behind Fourier Transforms and frequency domain processing, 
while the second half will look at specific frequency domain techniques from an application 
perspective and show how frequency domain techniques can often provide information that is 
difficult or sometimes impossible to realise in the time domain.  Topics to be discussed in this 
session include: continuous and discrete Fourier transforms and FFTs; How the FFT works; The 
complex exponential; Windowing equations and effects. 

1. Introduction 

All signals have a frequency domain representation and in 1822, Baron Jean Baptiste Fourier 
detailed the theory that any real world waveform can be generated by the addition of sinusoidal 
waves. This was arguably developed first by Gauss in 1805. The following diagram shows an 
example of this process : 

 

 

 

 

Signals can be transformed between the time and the frequency domain through various 
transforms. The signals can be processed within these domains and each process in one domain 
has a corollary in the other, as shown : 
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The most important process translation between the time and frequency domain is that 
convolution in the time domain is the equivalent to multiplication in the frequency domain and 
V.V. 

Within the “real”, continuous time world, systems are defined in the s-domain. In the digital 
world, these systems are translated to the s-domain, as shown in the following diagrams : 

 

Stable systems have their poles (feedback elements) located in the left hand half of the s-plane 
and these are mapped to a region that lies within the “unit-circle” of the z-domain. Zeros 
(feedforward elements) can lie anywhere on either plane. 

On the imaginary axis of the s plane : σ=0 

 ∴ z|σ=0 = e jwT 

Thus the jω axis of the s plane maps to a circle of unit radius in the z plane.  As ω increases from 
-∞ through 0 to +∞ the unit circle is retraced every 2πc. 

In the continuous time domain, e-sT is a unit delay, This is represented by z-1 in the discrete time 
domain, where z = e sT 

An arbitrary delay : δ(t-nT) is represented by : 

 e-nTs 

and 

 z-n 

i.e. : The Laplace transform is equivalent to the Fourier Transform for s = jω. The Laplace 
transform is given in the following equation : 
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and this translates to the following  in the z-domain : 

 

This is referred to as the two sided z-transform however, for most applications it can be 
simplified by assuming that at time t=0 then the output is at 0. 

Any real world signal or function has a related z-transform however there are many important z-
transforms that are worth remembering. Some of them are listed here, with t = nts written as n. 

 

Replacing s = jω in the Laplace transform gives the Fourier transform : 

The FT is equivalent to the LT for x(t) = 0 for t < 0 and if x(t) converges at t = ∞. 

As an example of how we might use the different domains, let us consider the following signal 
and its representation. 
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If we now filter the signal with the filter defined in the z-domain, we see the following results : 

The poles represent “gain” and the zeros “attenuation. The effects of applying the filter to the 
signal are frequency dependent and so we see that the filter has a low-pass effect and the signal 
is smoothed. This operation of the system on the signal is performed by either convolution in the 
time domain or multiplication in the frequency domain. 

2. Representing Signals 

Signals can be represented in many different ways. From Fourier’s theory, we know that we can 
represent any real world signal by the combination of two or more sinusoids. Therefore, we need 
to be able to understand how sinusoids work, in order that we can understand how the complex 
signals operate. 
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In the complex domain, we can think of a fundamental signal as a rotating phasor. A phasor is a 
rotating vector in the complex plane with magnitude A and rotational speed ω radians per second 

(ω = 2πf). 

 

A complex exponential can be represented as : 

 

A cosinusoid can be represented by a conjugate pair of phasors with a purely real result, 
similarly a sinusoid is represented by a conjugate pair of phasors with a purely imaginary result, 
as shown : 
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In polar format :



 

Phasors rotate in two directions and have the following characteristics. Positively rotating 
phasors rotate anti-clockwise and represent positive frequencies, whilst negatively rotating 
phasors rotate clockwise and represent negative frequencies. 

Referring to the Fourier transform, this just splits the signals up into the fundamental phasors, or 
complex exponential components. 

Signals can be processed or systems analysed in both the time and frequency domains, the 
following table shows the various theorems and how they relate to each other. 

 

So far, we have primarily considered the continuous domains but for DSP we need to consider 
the discrete equivalents. The discrete Fourier transform (DFT) is given in the following equation 
and it shows that for every frequency, the Fourier Transform X(k) determines the contribution of 
a complex sinusoid of that frequency in the composition of the signal x(n). 

The corollary of the Fourier transform is the inverse Fourier transform, as follows : 
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When using the FT, it is important to be aware of several issues, including : 

• The phase (the sign of the sine term) 

• An Engineers forward FT is the same as a Physicians inverse 

• The scaling (1/N) 

• Uncertainty Principle 

• Increased frequency domain resolution == reduced time domain resolution and v.v. 

• Continuity 

• Time domain continuity == frequency domain discontinuity and v.v. 

• E.G. A continuous time domain sinusoid is a frequency domain impulse 

3. The Fast Fourier Transform (FFT) 

There are many ways to approach an understanding of the FFT however there are some heuristic 
approached that explain the operation and can be used to extend the techniques. The Fourier 
transform can be considered to be a bank of band-pass filters that takes in a signal and the 
magnitude of the output of each filter is proportional to the total input energy into that filter. 
Each of these filters is convolving the input with a set of filter coefficients that are sinusoidal in 
nature, with the frequency of oscillation equal to the centre frequency of the filter. When 
performing the convolution over all the banks, many of the multiplications of data and 
coefficient values are repeated and therefore redundant. Computation saving can be made by 
implementing a single Fourier transform as 2 half sized Fourier transforms (i.e. Two N/2 point 
DFTs are faster than one N point DFT). Extrapolating this to its limit, a 2 point DFT is often the 
optimum process and larger FT operations can be constructed from this small building block. 
This leads to the fact that FFT lengths are usually powers of 2. This is a generalisation and there 
maybe architectural reasons why other lengths are preferential and it is not unknown to mix the 
sizes of the blocks – termed mixed radix transforms. 

For the purposes of this paper we will only discuss radix-2 transforms. When looking at the 
computational loading of FTs and FFTs, the former requires order N2 operations and the latter 
order N/2 log2N operations. 

So how do we combine the small FT building blocks into a complete Fourier transform ? The 
process starts by sub-dividing (decimating) the complete operations and this can be performed at 
either the time or frequency end of the operation. Taking an 8 point FT, the decimation in 
frequency operation is as follows :  
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The WN values are the coefficients of the FFT and are often referred to as twiddle factors. The 
twiddle factors are essentially the complex exponential values, according to the following 
equations. 

 

Each of the building blocks has the following structure : 

 

These structures are referred to as FFT butterflies – for obvious reasons ! 

The decimation in time operation has the following structure : 
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With the forward and inverse transforms, either the input or output data sets must be in a non-
linear format that uses a bit reversed address style. Most modern DSPs are able to handle this 
directly in hardware so converting the data back into a linear order often requires no overhead to 
the operation. 

The output of an FFT is limited in both resolution, and dynamic range. Resolution is defined as 
the gap between to adjacent frequency components (bins) and the dynamic range is the ratio of 
the smallest signal to the largest signal detectable. 

 

4. FFT Effects And Windowing 

When performing the FFT, the operation is processing a block of data. The frequency domain 
effect of this is defined by the equation sin(x)/x therefore the magnitude of the sidelobes is 
independent of the window length. Increasing the window length decreases the sidelobe width 
only, not the height. The effect is shown in the following diagrams : 
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Looking at the effects from a different perspective we see the edge effect more clearly. Using this 
approach we can also see how to remove the edge effect by using a window that tapers to zero at 
the extremities. 

 

The frequency domain effect is also clear : 

 

The windowing functions are typically developed from frequency domain requirements and a 
typical example is the Hanning Window, which is defined by the following equation : 
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There are many “standard” windowing functions and the time and frequency domain 
performances are shown. 

Time Domain Windowing Effects 

 

Frequency Domain Windowing Effects 

 

 

-200

-150

-100

-50

0

Blackman-Harris Blackman
Hamming Hanning
Kaiser Rectangl
Triangle

0
0.2
0.4
0.6
0.8

1

Blackman-Harris Blackman
Hamming Hanning
Kaiser Rectangle
Triangle



 

The performance of the windows is measurable via various parameters, including : 

• Central peak width 
• 6-dB point 

• Indicates how close signals can be before they can no longer be resolved 
• Highest sidelobe 
• Sidelobe fall off 
• Equivalent noise bandwidth (ENBW) 
• Specified how concentrated the spectral information is 
The important parameters for the main window functions are : 
• Triangle 

• Simple computation - no lookup table 
• Narrow spectral peak (-6dB @ 1.21 bins) 
• Large sidelobe 

• Cosine Bell 
• Moderate sidelobe rejection (-32 dB 1st lobe) 
• Narrow peak 

• Hamming 
• Moderate peak width 
• Poor sidelobe rejection 

• Blackman 
• Good sidelobe rejection (-60 dB 1st lobe) 
• Broad central peak 

• Kaiser 
• Very Good sidelobe rejection (-70 dB 1st lobe) 
• Broad central peak (-6dB @ 2.39 bins) 
• excellent ENBW 

Some window functions, like the triangular window, are very easy to calculate on-the-fly but 
with modern DSPs it is more common to place the data in a buffer in memory. 

In order to understand the output of the FFT, it is important to analyse the outputs generated by 
the basic signals. These can be easily related to the phasor systems. Note where the DC 
component lies, the examples have a wavelength integer number of bins. These components 
represent the phasors (magnitude, frequency and phase). 



FFT of a pure cosine waveform : 

 

Real component contains +ve and -ve frequencies 

FFT of a pure sine waveform : 

 

Imaginary component contains +ve and -ve frequencies 

5. Post FFT Processing 

FFT processing is not useful in itself, it is the post FFT processing that is usually the important 
issue, it defines what information can be extracted from the information. The following 
equations show how to calculate the magnitude and phase of the signals. 
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Power Spectrum Estimation is one of the common post FFT calculations and is calculated by 
averaging the outputs from successive FFTs. This is usually implemented by applying a one-pole 
averaging filter across frames, as shown : 

 

The final result – an FFT based spectrum analyser would look like the following : 

 

When implementing an FFT based system there are some standard suggestions that should be 
considered, these include : 

• Pre-calculate the coefficients 
• Window coefficients (N) 
• Twiddle factors (3 * N) / 4 sine wave 
• Memory 
• Use internal memory where possible 
• Align buffers on circular buffer boundary 
• Consider dynamic range / scaling issues 
• For PSD Z = √ (x2 + y2) 
• Therefore ½ output redundant - Saves computation 
• Turn on the cache 
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6. FFT Output Analysis 

The output of an FFT can be viewed in two basic formats. The difference is the location of the 
DC  component and this is shown in the following diagrams : 

 

The first format is often used in baseband applications e.g. speech and system analysis, where as 
the second is more common in H.F. communication applications, where fc is is hetrodyned down 
to D.C. The results are no different but sometimes make post processing easier. 

The “noise floor” of the FFT output depends on the size of the FFT. Averaging the signal means 
that the coherent signal (e.g. sinusoid) power increases by 6dB for doubling the number of 
samples. The average noise power however increases by 3dB for twice for the same increase in 
the number of samples. The SNR gain is therefore 3dB per order. 

Parceval’s theorem says that the average power of a periodic waveform is equal to the sum of the 
average powers carried by its separate frequency components individually. This is often used to 
calculate relative powers in-band and out-of-band e.g. Signal-to-Noise-Ratio (SNR). 

The FFT is a short time Fourier transform, edge effects cause discontinuities, to overcome these 
effects it is necessary to window the data. Unfortunately windowing can mask some important 
artefacts within the signal i.e. there can be a loss of vital information from continuous input at 
block edges. The solution is to overlap the FFTs. For input only applications we need to overlap 
inputs, for applications with continuous inputs and outputs it is necessary to overlap both and 
add the intermediate results. The following diagram shows the process : 
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Some applications only require the detection (or generation in the case of the IFFT) of a few 
frequencies, a useful technique is to “prune” the FFT structure, in such a way that only the 
essential calculations are executed. 

Very often, it is necessary to process data vectors that do not contain a number of samples that is 
an integer power of 2, in order to process this information, it is common to pad the data with 
zeros to the correct length. Zero padding does not affect the spectral content or the frequency 
resolution of the result but it does interpolate the original sample set across more points. This 
often leads to a more computationally efficient solution for non power of 2 buffer lengths. 



7. The Zoom-FFT 

The zoom-FFT utilises complex frequency shifting and decimation to zoom in on a particular 
frequency band of interest. This increases the frequency domain resolution, increases spectral 
range and reduces the system hardware cost and complexity. 

The following block diagram shows the structure of the zoom-FFT algorithm : 

 

The effect on the signal is : 

 

 

Typical applications of the zoom-FFT include; ultrasonic blood flow analysis, R.F. 
communications, mechanical stress analysis and Doppler radar. 

This technique was used in an application to detect air bubbles suspended in a liquid, which 
resonate at frequencies that are proportional to their size, this resonance makes the bubbles act as 
diode mixers consequently when the liquid is stimulated with two signals of different frequencies 

0 Hz f      = 1 MHz f

After Mix Before Mix

Mix Down to Baseband

mix

x(k)
exp(j 2.π.fmix.k)

w(k)

i Channel

q Channel
Comb Filters

16:1

FIR FIlters Window
52.031 KHz

q(k)

i(k)

8k Point

Complex

FFT

I(n)

Q(n)

Mixer FFT

Blackman-
HarrisHDF - High decimation filter

i(k) - In phase signal q(k) - Quadrature phase signal

Decimation
4:1

HDF

HDF



they are modulated together. The energy in the mixed signal is related to the wavelength of the 
incident signals and the size of the bubble, therefore the bubble size can be detected by looking 
at the returned signal. 

The ultrasound carrier operates at 1 MHz, which necessitated a high speed (3.33 MHz) sampling 
front end.  The high performance (120 MFLOPS) DSP sub-system and easy to use PC-DOS 
based Man Machine Interface. 

The system has to produce a Fast Fourier Transform (FFT) of a region of the frequency spectrum 
centred around a frequency of approximately 1 MHz.  The frequency band of interest is 
approximately 25 kHz either side of the 1 MHz centre frequency, giving a total bandwidth of 
approximately 50 kHz.  The required frequency resolution is 5 Hz.  A Zoom FFT method is used 
to generate the required spectral data, since in order to obtain the required spectral resolution 
using a standard FFT would require an unfeasible large transform. 

Another technique for reducing the processing requirement for some applications is to prune the 
FFT. This is useful when only a few frequencies need to be analysed. 

 

8. Frequency Domain Convolution And Correlation 

Convolution in the time domain is equal to multiplication in the frequency domain and vice 
versa. Correlation in the frequency domain is equivalent to convolution, with one array time 
reversed. The output length must be greater than N + M – 1, where N and M are the lengths of 
the input vectors. It is important that the FFT length is also therefore greater than N + M – 1. The 
first thing that is required is that the inputs require zero-padding, otherwise the result is circular 
convolution / correlation. The benefits of this are the potential large computational savings. For 
many applications it is possible to pre-compute the convolution or correlation kernel FFT for 
more efficiency. 
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The following block diagram shows the operation : 

 

The FFT of a system (e.g. a filter) impulse response is the transfer function, the finite length 
transfer function is applied to an “infinite length” signal so an overlap method will be required 
(E.G. Overlap and add). It is important to use the correct coefficients E.G. for a low-pass filter 
can not just set high frequency coefficients to zero as this generates a time domain sin(x)/x 
function. 

The following diagram shows the configuration of the frequency domain correlation operation. 
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9. An Ultrasonic Time-Of-Flight System  

There is a need within the steel industry for accurate measurements of steel sheet thickness. This 
can be achieved by making ultrasonic pulse-echo measurements through the steel and calculating 
the time-of-flight of the ultrasound. Since the velocity of the ultrasound in the steel is known, the 
thickness of the sheet can thus be calculated. A further requirement of the steel industry is the 
assessment of the quality of the sheet steel. One of the flaws that is often found within steel is 
due to a phenomenon known as residual stress. This is caused by local deformations in the 
crystalline structure of the steel which occur during the cooling phase after hot rolling.  Residual 
stresses within a structure cause local variations in the velocity of the ultrasound, therefore a 
time-of-flight measurement which falls outside a given range may also be due to such flaws 
within the steel.  

The following diagram shows a typical system configuration for a sheet steel thickness test 
system : 

ss

T = 2s/cT = 2s/c

steel c = 6100m/ssteel c = 6100m/s

Pulse Repetition Frequency = 1Pulse Repetition Frequency = 1 KHz KHz



The analog signal from the transducer is sampled at 10 MHz and passed to the Dual Sharc DSP 
system for processing, in a production line application this would be a continuous process. The 
algorithm then uses a method which involves coherent averaging of the incoming data, which is 
then interpolated using a frequency-domain technique (in order to increase the temporal 
resolution of the dataset). The time taken between successive reverberations of the ultrasound 
within the steel can then be detected using a process such as autocorrelation. The distance 
between the peaks in the autocorrelation corresponding to the time between reverberations. The 

frequency domain interpolation process is shown graphically as : 

Zero padding of the frequency domain samples is equivalent to sin(x)/x interpolation in the time 
domain and this helps with more accurate location of the zero crossing points. The operation is 
shown below : 
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The far face reverberations can then be detected by autocorrelation. 

 

 

This final plot shows the output from a single generated pulse : 
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10. Radar Signal Processing 

The system specification was to meet a 40 μ seconds pulse repetition interval (PRI), with 1 to 32 
range gates. The processing was to be FFT based and required 300 MFLOPS, which mapped 
onto six  50 MHz TMS320C40s. The system required a 10 MHz sample rate and 12 bit 
quantisation. The following diagram shows a typical radar example, with stationary and moving 
targets : 

 

 

 

The system configuration is shown in the following diagram : 
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The Doppler shifted frequency from a moving object is shown in the example : 

fd = 2 x vr x fo/c     (c = 3 x 10^8 m/s) 

E.G. fo = 3 GHz, vr = 300 m/s (almost mach 1) 

fd = 2 x 300 x (3 x 10^9)/(3 x 10^8) = 6 KHz 

 

Range gating is the technique for analysing the motion of objects at different ranges from the 
radar system. The radar outputs pulses at given time spacings and starts sampling the input after 
a delay. The larger the delay, the greater the distance from the radar. For each block of samples 
taken the nth sample is at a particular range – over a sequence of sampled blocks it is possible to 
look at all the samples at a particular range, this is referred to as the range gate. 

 

Each range gate corresponds to a number of cycles at the transmitted frequency, as shown below. 

mixed down
 frequency

fo

Range gates
(fr)

0-31
........

0-31
........

0-31
........

0-31
........

0-31
........

time (us) 0 40 80 120 160

to 64 blocks of range gates

Pulse width 
150ns

d = c/Ts
At fs=10MS/s 
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The whole process is shown pictorially below, along with the FFT magnitude results from the 
house and aeroplane example : 

 

The sinusoidal result seen above is due to the phase of the returned pulses being modified by 
moving target. The D.C. signal is generated by the stationary target (the house). The moving 
signal is generated by the moving target (aeroplane). The magnitude of the FFT gives the size of 
the target, the FFT bin gives the speed of the target. 

The DSP process is shown below : 
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The Arrangement Of The FFTs is : 

 

Range gate resolution (meters) = wavefront velocity * sample rate 

= 3 x 10 8 x 100 x 10 -9 

= 30 M 

Total range = range gate resolution * number of gates 

=32 x 30 = 960 m 
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11. Frequency Domain Beamforming 

Beamforming is the acquisition of a signal using an array of transducers and then applying a 
delay (at its most simplest), to “steer” the direction of the “beam” in a particular direction. 
Essentially the direction of the beam is relative to the sampling phase of the transducers, as 
shown in the diagram below : 

 

 

In the time domain, the beams are steered in a single direction, using the following system : 

 

One of the limitations of time domain beamsteering is that one bank of delays can only steer the 
beam in one single direction. The solution is to use the fact that time delays in the time domain 
are equivalent to complex exponential multiplication in the frequency domain, using the 
following equation. 



 

Essentially this says that we can translate the signals to the frequency domain and cross multiply 
by the exponential function and the signals will be delayed by the appropriate amount. The 
benefit of performing this operation in the frequency domain is that we can effectively steer the 
beam in all directions at the same time. 

 

12. Goertzel filters 

A Goertzel algorithm is a very efficient technique for selecting a particular pass band in a filtered 
signal. The Goertzel algorithm is defined by the equation : 

H f z

f
fe z

f
f z z

i
i

s

i

s( )
cos

=
−

−
⎛
⎝
⎜

⎞
⎠
⎟ +

−

− −

1

1 2 2

2
1

1 2

π

π

 

Where fi is the frequency of interest and fs is the sampling frequency. 

The algorithm is most commonly implemented as a second order recursive IIR filter, as shown in 
the following flow diagram. 
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This filter does not maintain the complex (phase) information but the Goertzel filter is often used 
to detect particular individual frequencies, a common application is the detection of DTMF 
tones. This algorithm is very efficient, when compared with the regular FFT, especially when the 
requirement is only to detect a few individual frequencies. 

 

Conclusion 

Translating signals from the time to the frequency domain can allow a whole new and powerful 
area of signal processing. All real signals can be generated from the sum of the component 
sinusoids. The Fourier transform will extract the information of phase and magnitude. It is 
important to be aware of the effects of scaling and edge effects. To remove the edge effects of 
the rectangular window, it is important to use the appropriate windowing function for the 
application. 



Appendix A - Decibels 

In many applications, the use of a logarithmic representation of values gives many advantages, 
this section discusses the use of decibels (dB). 

The decibel is defined as : 

dB P
P

= 10 10
1

2
log

 

Where P1 and P2 are measures of power. 

In many applications the voltage (V) or current (I) is measured, power is proportional to V2 or 
I2, giving the equivalent dB equations of : 

dB V
V

= 20 10
1

2
log

 

and 

dB I
I

= 20 10
1

2
log

 

For many applications, P2 and V2 assume standard values, for example in telecommunications 
P2 = 1milliWatt in 600 Ohms, in this case the logarithmic scale is dBm. Note that dBA is not 
relative to Amps but is used as a measure of sound intensity. One of the advantages of using 
logarithms is that a multiplication of the linear values can be achieved by the addition of 
logarithms. 

To revert back to a linear scale the following equation is used for power : 

1

2
1010P

P
dB

=
 

with the equivalent voltage equation being : 

1

2
2010V

V
dB

=
 

The following table shows some of the basic equivalents between absolute power and dB. 

 

 



 

Notes : 

The use of π is an approximation of √10 that is useful for quick calculations and accurate to 2 
significant figures. 

The table shows the absolute power doubles for a 3 dB increase and halves for a 3dB drop. The 
voltage and current however double for a 6 dB increase. 
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P
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V
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2

I
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30 103 = 1000 10π 

20 102 = 100 10 

10 101 = 10 π 

9 8 2√2 

8 2π 2.5 

7 5 2.24 

6 4 2 

5 π 1.77 

4 2.5 π/2 

3 2 √2 

2 π/2 1.5 

1 1.25 1.12 

0 100 = 1 1 

-10 10-1 = 0.1 π/10 

-20 10-2 = 0.01 0.1 

-30 10-3 = 0.001 π/100 



This table can be used to give all other dB / absolute equivalents : 

16 dB = 10 dB + 6 dB = 10 x 4 = >  
1

2

P
P  (absolute) = 40 

-74 dB = -(70 + 4) = 1/(107x2.5) => 
1

2

P
P  (absolute) = 4x10-8 

 

 



Abbreviations 

ADC Analog to digital converter 

ADPCM Adaptive Differential Pulse Coded Modulation 

ALU Arithmetic Logic Unit. The part of the processor that performs the 
mathematics 

AM Amplitude Modulation 

APC Adaptive Predictive Coding 

ASIC Application Specific Integrated Circuit 

BPF Band-pass filter 

CCITT International Telegraph and Telephone Consultative Committee (Now 
called ITU) 

CDMA Code Division Multiple Access 

CELP Code Excited Linear Predictive Coding 

CODEC COder-DECoder - used in analog signal sampling 

COMPAND
ER COMpressor-exPANDER 

CPU Central Processing Unit - the main part of the DSP that executes the 
instructions 

CVSD Continuously Variable Slope Delta modulator 

CW Continuous Wave 

DAC Digital to analog converter 

DCT Discrete Cosine Transform 

DFT Discrete Fourier Transform 

DIF Decimation In Frequency (FFT) 

DIT Decimation In Time (FFT) 

DSP Digital Signal Processing OR a Digital Signal Processor 



DTMF Dual Tone Multi-Frequency - telephone dialling standard 

fs The sample rate (or frequency) of the system. 

FDM Frequency Division Multiplexing 

FDMA Frequency Division Multiple Access 

FFT Fast Fourier Transform 

FIR Finite Impulse Response filter, one containing no feedback elements 

FSK Frequency Shift Keying - Digital frequency modulation 

GMSK Gaussian Minimum Shift Keying 

HF High frequency - usually refers to applications such as radio 
communications 

LMS Least Mean Squares - a technique for adapting FIR filter coefficients 

HPF High-pass filter 

IDCT Inverse Discrete Cosine Transform 

IDFT Inverse Discrete Fourier Transform 

IFFT Inverse Fast Fourier Transform 

IIR Infinite Impulse Response filter, one containing feedback elements 

ITU International Telegraph Union (formerly CCITT) 

JPEG Joint Photographic Expert Group (Still image compression standard) 

LPC Linear Predictive Coding 

LPF Low-pass filter 

MAC Multiply Accumulate 

MIPS Millions of Instructions Per Second 

MFLOPS Million Floating Point Operations Per Second, a typical measure of 
floating-point DSP performance 

MODEM MODulator / DEModulator 



MPEG Moving Pictures Expert Group (Moving video compression standard) 

MUX Multiplexer 

PCM Pulse Coded Modulation 

PSK Phase Shift Keying 

PWM Pulse Width Modulation 

QAM Quadrature Amplitude Modulation 

QMF Quadrature Mirror Filter 

QPSK Quadrature Phase Shift Keying 

RELP Residual Excited Linear Predictive coder 

RF Radio Frequency 

SBC Sub-Band Coding 

S/H Sample and Hold 

SNR Signal to Noise Ratio, common measure of performance for ADCs 

TDM 
Time Division Multiplexing - A communications system that divides a 
single communications channel into several smaller ones, using 
discrete time slots. 

TDMA Time Division Multiple Access 

ZOH Zero Order Hold, an effect of analog signal reconstruction 

 

 



Glossary 

Adaptive 
Differential Pulse 
Coded 
Modulation 
(ADPCM) 

A speech compression algorithm that adaptively filters the 
difference between two successive PCM samples. This 
technique typically gives a data rate of about 32 Kbps. 

Adaptive 
equalisation 

A filtering system that can allow for the effects of a changing 
communications medium to be cancelled. 

Adaptive filter A filter that can adapt its coefficients to model a system. 

Adaptive 
predictive coding 

An LPC based speech compression technique that uses an 
adaptive predictive voice source. 

Aliasing The effect on a signal when it has been sampled at less than 
twice its highest frequency. 

Amplitude 
Modulation 

A communications scheme that modifies the amplitude of a 
carrier signal according to the amplitude of the modulating 
signal. 

Anti-aliasing filter 
An analog filter that is used prior to sampling to limit the 
signal bandwidth to less than half the sample rate (generally 
low pass) to prevent aliasing distortion. 

Asynchronous 
communications 

A communications system where the transmitter and receiver 
run independently. The beginning and end of the data packet 
are usually indicated by start and stop bits in the data stream. 

Attenuation Decrease in magnitude. 

Autocorrelation The correlation of a signal with a delayed version of itself. 

Band-pass filter A filter that only allows a single range of frequencies to pass 
through. 

Band-stop filter A filter that removes a single range of frequencies. 

Bandwidth The range of frequencies that make up a more complex signal. 

Barrel shifter Part of the ALU that allows single cycle shifting and rotating 
of data words. 

Baseband Signals that have a frequency spectrum based around 0 Hz. 



E.G. speech. 

Baud rate 
The rate at which symbols are transmitted over a 
communications channel. A symbol may contain one or more 
bits of information. 

Bit rate The rate at which bits are transmitted and equals the baud rate 
* the number of bits per baud. 

Biquad Typical 'building block' of IIR filters - from the bi-quadratic 
equation. 

Butterfly 

The smallest constituent part of an FFT, it represents a cross 
multiplication, incorporating multiplication, sum and 
difference operations. The name is derived from the shape of 
the signal flow diagram. 

Companding 
A logarithmic scheme for sampling analog signals that 
increases the resolution of signals with a low amplitude. 
Common standards include A-Law and u-Law. 

Convolution An identical operation to Finite Impulse Response filtering. 

Correlation The comparison of two signals in time, to extract a measure of 
their similarity. 

Data flow 
architecture 

A multi-processing architecture where individual processing 
elements perform multiple instructions on a many pieces of 
data. 

Discrete Fourier 
Transform (DFT) 

A transform that gives the frequency domain representation of 
a time domain sequence. 

Discrete sample A single sample of a continuously variable signal that is taken 
at a fixed point in time. 

Echo canceller A filter that will remove reflected signals on a transmission 
line that are caused by impedance mismatches. 

Equalisation A filter that will compensate for the effects of a 
communications channel. 

Fast Fourier 
Transform (FFT) An optimised version of the DFT. 

Finite Impulse 
Response (FIR) A filter that includes no feedback and is unconditionally 



Filter stable. 

Floating-point A number scheme that codes a value with a fraction and an 
exponent and allows a high signal dynamic range. 

Frequency 
Division 
Multiplexing 
(FDM) 

A communications system that divides a single channel into 
smaller ones with discrete frequency bands. 

Frequency 
domain 

The representation of the amplitude of a signal with respect to 
frequency. 

Frequency Shift 
Keying (FSK) 

A digital modulation scheme that uses a different frequency to 
represent different binary levels. 

Full duplex Communications in two directions simultaneously. 

Gain Amplification or increase in magnitude. 

Half duplex Communications in two directions, but only one at a time. 

Harvard 
Architecture 

A microprocessor architecture that uses separate busses for 
program and data, this is typically used on DSPs to optimise 
the data throughput. 

High pass filter A filter that allows high frequencies to pass through. 

Hybrid An analog 2 wire to 4 wire (and vice versa) converter. 

Infinite Impulse 
Response (IIR) 
filter 

A filter that incorporates data feedback. Also called a 
recursive filter. 

Linearity 
A measure of the performance of an ADC or DAC to convert 
signals with different amplitudes, to the same degree of 
accuracy. 

Linear Predictive 
Coding (LPC) 

A speech compression technique that is based on modelling 
the vocal tract with a time varying filter. 

Low pass filter A filter that allows low frequencies to pass through. 

Multi-processing The division of a process across several processors to improve 
the performance of the system. 



Multi-tasking The division of processor across several tasks, such that each 
one is able to receive its required number of processor cycles. 

Multiple 
Instruction 
Multiple Data 
(MIMD) 

See data flow architecture. 

Modulation The modification of the characteristics of a signal so that it 
might carry the information contained in another signal. 

Parallel 
processing 

The execution of tasks in parallel, either on a single processor 
via multi-tasking or across several processors by multi-
processing. 

Pass band The frequency range of a filter through which a signal may 
pass with little or no attenuation. 

Phase Shift 
Keying (PSK) 

A digital modulation scheme that uses a constant frequency 
carrier with a variable phase. 

Pipelining 
A technique commonly used in high performance 
microprocessors that allows an instruction to begin execution 
before previous ones have been completed. 

Pole Artefact leading to frequency dependent gain in a signal. 
Generated by a feedback element in a filter. 

Pulse Code 
Modulation 
(PCM) 

The effect of sampling an analog signal. 

Quadrature 
Amplitude 
Modulation 
(QAM) 

A variation of PSK that incorporates AM to increase the 
number of bits per baud. 

Recursive filter See Infinite Impulse Response filter. 

Resolution The accuracy of and ADC or DAC circuit. 

Sampling The conversion of a continuous time analog signal into a 
discrete time signal. 

Sample rate The inverse of the time between successive samples of an 
analog signal. 



Single Instruction 
Multiple Data 
(SIMD) 

A multi-processing architecture where individual processing 
elements perform the same instruction on many pieces of data, 
also referred to as a systolic array. 

Spectrum analyser An instrument that displays the frequency domain 
representation of a signal. 

Stop band The frequency range of a filter through which a signal may 
NOT pass and where it experiences large attenuation. 

Synchronous 
communications 

A communications system where the data is transmitted and 
received at discrete times, which are usually synchronized by a 
clock signal. 

Systolic array See Single Instruction Multiple Data. 

Time domain The representation of the amplitude of a signal with respect to 
time. 

Transducer A piece of equipment that converts a physical signal into an 
electrical signal. 

Twiddle factor The coefficients of the FFT algorithm, typically a ¾ sine table. 

Von-Neumann 
architecture 

A traditional microprocessor architecture that uses the same 
bus for program and data. 

z-domain 
The discrete frequency domain, in which the jω axis on the 
continuous time s-plane is mapped to a unit circle in the z-
domain. 

Zero Artefact leading to frequency dependent attenuation in a 
signal. Generated by a feed-forward element in a filter. 
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